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Abstract—A huge quantity of learning tasks have to deal
with sequential  data,  where either  input or  out-put  data can
have  sequential  nature.  This  is  the  case,e.g.,  of  time series
forecasting,  speech  recognition,video  analysis,  music
generation, etc., since they all require algorithms able to model
sequences.  Duringrecent  years,  recurrent  neural  networks
(RNNs) architectures have been successfully used in one as
well as for multidimensional sequence learning tasks, quickly
constituting the state of the art option for extracting patterns
from temporal data. Concerning financial applications, one of
from the most important examples of sequential data analysis
problems is related to the forecasting the dynamic in time of
structured  financial  products.  To  this  end,  we  compare
different  RNNs  architectures.  In  particular  we consider  the
basic multi-layer RNN, long-short term memory (LSTM) and
gated  recurrent  unit  (GRU)  performances  on  forecasting
Google  stock  price  movements.  The  latter  will  be  done  on
different  time horizons,  mainly to  explain associated hidden
dynamics. In particular, we show that our approach allows to
deal with long sequences, as in the case of LSTM. Moreover
the obtained performances turn out to be of high level even on
different time horizons.  Indeed,  we are able to obtain up to
72% of accuracy.

Keywords—  Artificial  neural  networks,  Deep  Learning,
Financial  forecasting,  Gated  recurrent  unit,  Long short-term
memory,  Multi-layer  neural  network,  Recurrent  neural
network, Stock markets analysis, Time series analysis.

I. INTRODUCTION

Neural  networks  (NNs)  have  been  widely  recognized  as
very powerful machine learning models, achieving state-of the
art results in a huge range of different machine learning tasks.
In  perspective  of  artificial  intelligence  algorithms  NNs  are
known as  connectionist  models,  since  they consist  of  basic
connected  units,  the  artificial  neurons,  which  are  jointly
combined in layers, that can learn hierarchical representations.
During  last  years,  also  thank  to  the  exponential  growth  of
computational  power,  the  area  of  artificial  intelligence  has
gone through a relevant development. The latter is witnessed
by  the  born  of  the  so  called  deep  learning  applications.



L. Di Persio - Department of Computer Science - University of Verona -
(corresponding author - e-mail:  luca.dipersio@univr.it)

O. Honchar - Department of Computer Science - University of Verona 
(e-mail:  oleksandr.honchar@univr.it).

Basically, deep learning models are neural networks with very
large size of representation hierarchy, an example being given
by multilayer perceptrons (MLPs).

However,  such  models  still  suffer  of  some  serious
limitations. In fact, when working with sequential data, we can
not process related time series at every time step, and saving
some  entire  state  of  the  sequence.  This  is  why,  in  such
scenario, the RNNs option can help a lot. Indeed, RNNs are
still connectionist type models, but they pass input data inside
the network across time steps, hence processing one element at
a  time.  Different  choices  to  representt  emporal  data  can be
given using Hidden Markov Models (HMMs), which are often
implemented  to  model  time  series  as  the  realization  of
probabilistically  dependent  sequence  of  unknown states.  In
this context, the usual algorithmic tool is the Viterbi dynamic
programming  algorithm,  that  performs  efficient  inference
scales with quadratic time. Since the implementation of RNNs
depends only on one single input in a time, this allows to speed
up the task when compared with the HMMs approach. It  is
worth to mention that  other,  more classical  methods can be
used to model and forecast time series, as in the case of, e.g.,
ARMA, ARIMA, GARCH, etc., or using stochastic filter, such
the Kalman filter, and switching models approach, as in, e.g.,
[3, 4]. Nevertheless, black box methods, like the NNs ones, are
appealing because they require no prior  assumptions on the
stochastic nature of the underlying dynamics, see, e.g., [5], and
references  therein.  .  The  same  type  of  limitations  also
characterize  stochastic  filter  tools,  as  for  the  Kalman case,
especially when we aim at studying financial data. Indeed, the
Kalman filter does not have enough features to capture rapid
movements  of  stock  prices,  particularly in  case  of  financial
turbu  lence,  high  volatility  regimes  and  complex,
interconnected financial networks, see, e.g., [2], and references
therein. 

Machine learning models in general, and NNs in particular,
have been successfully applied in finance, both for forecasting
and  hedging  purposes.  For  example,  portfolio  optimization
problem  [15],  where  neural  networks,  genetic  algorithms,
reinforcement learning, were applied obtaining very promising
results. Such type of models can be also applied within the risk
management  scenario,  where  risky assets,  see  [14],  can  be
classified  in  supervised  way by  mean  of  classical  machine
learning algorithms as  random forests,  or  by using complex
classifiers, as deep Nns. In the present paper we consider the
forecasting problem of stock price prediction. Concerning the
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latter  we  would  like  to  underline  that  different  approaches
have been already proposed. Even taking into account only the
NNS  ones,  we  can  applications  belonging  to  the  MLPs
methods,  see,  e.g.,  [16],  convolutional  neural  networks
(CNNs), see, e.g.,[6], Elman neural networks, see, e.g., [10],
etc. We decided to focus our attention on the analysis of last
state of the art RNNs architectures, paying particlar attention
to the GRU and the LSTM. 

We  also  provide  some  preliminary  results  about  hidden
dynamics  inside  these  neural  networks with visualization  of
inner  layers  activations.  In  particular,  we  show  on  which
fluctuations  of  input  time  series  RNNs  are  reacting.  Our
analysis is based on Google stock prices data.  Google (now
Alphabet Inc.) is one of the most fast growing company in the
world, being active on different technology markets, such as
web search, advertisements, artificial intelligence, self-driving
cars.  It  is  a  stable  member  of  S&P  Dow  Jones  Indices,
therefore, and there is a great financial interest concerning the
forecast of its stock performances. The fact that, due to stable
situation  of  high  technologies  market,  the  associated  time
series dataset are not biased is a relevant feature of Alphabet’s
financial time series, particularly from the RRNs point of view.

II.  RNN ARCHITECTURES  -  A: RNN

Typically a  RNN  approach  is  based  on  learning  from
sequences,  where  the  sequence  is  noting but  a  list  of  pairs
(x_t,y_t),  where x_t,  resp.  y_t,  indicates  an input,  resp.  the
corresponding output, at a given time step t. For different types
of problems we can have a constant output value y_t=t, for for
the whole sequence, or we can choose between a list of desired
outputs for every single x_t. To model sequence, at every time
step we consider some hidden state. The latter allows the RNN
to understands the current state of a sequence, remembers the
context and processes  it  forward to future values.  To  every
new input x_t, a new hidden state, let us indicate it with h_t, is
added according to h_(t-1). In the context of so called regular
fully-connected neural networks, at every time step the RNN is
just a feed-forward neural network with one hidden layer with
an input x_t and an output y_t. Taking into account that we are
now considering a couple of inputs, x_t and h_(t-1) ,there are
three weight matrices, namely W_(hx),for weights from input
to hidden layer, W_(hh )from hidden to hidden, and W_(yh)
for  the  output’s  weights.  The  resulting  basic  equations  for
RNN are the following:

Figure 1: Recurrent neural network diagram

The training procedure for RNNs is usually represented by
the so called backpropagation through time (BPTT) algorithm.
The latter is derived analogously as the basic backpropagation
one. Since the weight update procedure is typically performed
by an iterative numerical optimization algorithm, which uses
n-th  order  partial  derivative,  e.g.  first  order  in  case  of  the
stochastic gradient descent, we need all the partial derivatives
of  the  error  metric  with  respect  to  the  weights.  The  loss
function  can  be  represented  by  a  negative  log  probability,
namely

To realize the BPTT algorithm, we first have to initialize all
the weight matrices with random values. Then the following
steps are repeated until convergence:

• U Unfold RNN for N time steps to get basic feed 
forward neural network

• Set inputs to this network to zero vectors
• Perform forward and backward propagation as in a 

feed-forward network for single training example
• Average gradients in every layer to update weight 

matrices on every time step the same way
• Repeat steps above for every training example in 

dataset

III.  RNN ARCHITECTURES  -  B: LSTM

Basic  RNNs  perform particularly  well  in  modeling  short
sequences.  Nevertheless,  they  show  a  rather  ample  set  of
problems. This is, e.g., the case of vanishing gradients, where
the gradient signal gets so small that learning becomes very
slow for  long-term dependencies  in  the  data.  On  the  other
hand, if the values in the weight matrix become large, this can
lead to a situation where the gradient signal is so large that the
learning scheme diverges. The latter is often called exploding
gradients. In order to overcome problems with long sequences
an interesting approach for long-short term memory has been
developed  by Schmidhuber  in  [11],  see  the  scheme of  one
LSTM cell on figure 2. 

Comparing to RNNs, LSTM’s single time step cell  has a
more  complex  structure  then  just  hidden  state,  input  and
output. Inside these cells, often called memory blocks, there
are three adaptive and multiplicative gating units,  i.e. the input
gate, the forget gate and the output gate. Both input and output
gates have the same role as in the RNNs input and outputs
cases, with corresponding weights. The new instance, namely
the forget gate, play the role of learning how to remember or to

st=t a nh(W hx x t+W hh s t−1+bt )

ot=s o f t m ax (W yh st) ,

−1
N

∑
i=1

N

ln p t a r get t
.
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forget  its  previous  state.  This  latter  feature  allows to  catch
more  complex  temporal  patterns.  The  forward  propagation
equations characterizing the LSTM gates, read as follows:

and for the forget state update, we have:

where  x_t  represents  the  input  to  the  memory cell,   while
W_i  ,W_f ,W_c ,W_o ,U_i  ,U_f ,U_c ,U_o are  the weight
matrices, and b_i ,b_f ,b_c ,b_o are biases.

Figure 2: Long-short term memory cell diagram

IV. RNN ARCHITECTURES  -  C: GRU

In  what  follows  we  consider  the  Gated  Recurrent  Units
(GRUs),  see[1].  Basically  GRUs are  supposed  to  solve  the
problem affecting the RNNs architectures. In particular, they
use the same gates approach defining the LSTMs, but merging
the input gate with the and forget gate, and the same holds for
cell state as well as for the hidden state. The result is a lighter
model which is supposed to be trained faster, also performing
slightly better for some tasks, see [1]. The typical GRU cell
diagram can be represented as in figure 3.

Figure 3: Gated recurrent unit network diagram

The forward propagation equations of typical GRU gates, read
as follows:

where x_t ,h_t ,z_t ,r_t are, respectively, the input, the output,
the  update  gate,  and  the  reset  gate  vectors,  while  W,U
represent the parameter matrices, and b_z,b_r,b_h are biases.
We would likt  to mention the comparison considered  by in
[12]  between  RNNs,  LSTMs,  GRUs  and  other  variants  of
RNNs architectures. The final result clearly show that they all
three basically produce the same performances.

V. DATA PREPROCESSING

In what follows we focus our attention on the GOOGL stock
prices, exploiting daily data for the last five years, i.e. 2012-
2016,  see figure  4.  Our goal  is  to  forecast  the movement’s
direction  of  the  stock  we are  interested  in,  on  the  basis  of
historical data. In particular we consider a typical time window
of 30 days of open price, high price, low price, close price and
volume (OHLCV) data. The first step consists in rescaling our
windows, e.g., by normalizing them as follows

or by a Min-Max type-scaling

To perform our analysis we have consider the [−1;1]. This is
because, as we better see later, NNs with hyperbolic tangent

it=σ (W i x t+U iht−1+bi)

c in t=t anh(W c x t+U c ht−1+bc i n
)

f t=σ (W f x t+U f ht−1+b f )

ot=σ (W o xt+U o ht−1+bo) ;

c t=f t⋅ct−1+it⋅c in t

ht=o t⋅t anh(c t ),
zt=σ (W z x t+U z ht−1+bz )

r t=σ (W r xt+U r h t−1+br

ht=(1−zt)⋅H t−1+¿

+zt⋅tanh(W h xt+Uh(rt⋅ht−1 )+bh

¿¿¿¿

z=
x−μ

σ
; μ=

1
N
∑
i=1

N

( x i) ;σ=√1
N
∑
i=1

N

( xi−μ )
2 ,

Xnor m=
X−X mi n

Xma x−Xmi n

.
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activation function will be used, the latter being characterized
by an inner activations range equals to [−1;1]. We underline
that  our prediction object  consists in the difference of close
prices of last day with respect to a time window and objective
range, namely considering the next day, the next 5 days, the 10
days, etc. The resulting differences are then binarized to better
show if the close price will go up, or down, which leads to the
use of binary vectors [1;0] and [0;1]. Our data set  is a set of
normalized time windows of 30 minutes with corresponding
labels if price goes up or down. We split our dataset into a
train  set  and  a  test  set,  with  a  division  of  90%  to  10%,
respectively).  Splits  are  done in historical  order  to  simulate
real world situation, when

Figure 4: Close prices of GOOGL asset

we  train  on  past  data  and  try  to  predict  future.  To  avoid
overfitting,  we shuffle our  test  and train sets  after  splitting.
After splitting we see, that we have 45% of up labels and 55%
down labels in our test dataset. It will be a good test to check,
if our algorithm did not overfit - if it shows 55% of accuracy,
it shouldn’t mean that it predicts better then random guess, it
means that it just  learnt the distribution in test dataset, with
other words, overfitted the dataset.

VI.EXPERIMENTAL RESULTS

In this section we provide the computational results re lated to
the training process. All NNs were trained using Keras, which
a  NNs  library  written  in  Python  for  deep  learning.  Every
network was trained for 100 epochs. This high value has been
chosen because experimental results show that training on less
epochs  causes  the  deep  network to  overfit  test  set  and  just
learn  the distribution. Moreover,  training for longer time is
necessary  to  better  understand  convergence  trend.  If  after
some  time  cross-entropy  error  will  start  to  grow,  we  can
choose model that has the best performance. As optimization
algorithm we have  used  the  Adam approach,  see  [9],  with
related  gradients  calculated  with BPTT  algorithm, while we
have used a GPU hardware,  namely Nvidia GTX 860M,  to
reduce computational  costs.

A - Performance Analysis

For all RNNs we use the same pattern, namely a two stacked
recurrent  layers.  In  this  model  the  output  of  the  first  layer
constitutes the input of the second and so on, with one affine
layer  on the top with softmax function on the output  to re-
sample it as a probability distribution. The activation function
of cells is the tanh function, while the function for the inner
activation inside the cells is a sigmoid function. Moreover we
have use hard approximation of the sigmoid function to speed
up the whole procedure. Start weights for inputs are initialized
exploiting the Glorot uniform, see [17], hence we have

while the inner weights in cells are initialized with orthogonal
initialization described by Saxe, McClelland, and Ganguli in
[8]. The latter implies that They the weight matrix should be
chosen as a random orthogonal matrix, namely a square matrix
W such that If you modify this document for use with other

Results  for  prediction  trend  for  the  next  day are  shown on
figures from 5 to 10. The results are then summarized in table
on figure 12.

Figure 5: RNN loss within 100 epochs

Looking at the error plots we can easily see that regular RNNs
tends to overfit. In fact, cross-entropy value has its minimum
around the  70th  epoch,  starting to  grow again  after  this.  It
follows, that it is better to use early stopping technique, see
[13], to know when optimally stop the training scheme. In case
of  LSTM and GRU, loss tends to decrease, so these networks
can be run more time and on more data, in case of GRU we
can see that convergence is smoother then with LSTMs. Time
consumption for training 100 epochs is in table 13 We also
tried to increase efficiency with dropout technique for U and
W weights,  see [7],  to  LSTM and GRU. Nevertheless  such

a=√ 12
f an in+f anou t

¿W∼U [−a ,a ] ,

W T W =I .
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approach did not show improvements for  GRU and showed
small improvement, at around +2% for LSTM.

Figure 6: RNN accuracy within 100 epochs

Figure 7: LSTM loss within 100 epochs

Figure 8: LSTM accuracy within 100 epochs

Figure 9: GRU loss within 100 epochs

Figure 10: GRU accuracy within 100 epochs

Figure 11: Prediction accuracy for different ranges:
from 1 to 15 days

Architecture Log loss Accuracy
RNN 0.725 0.625

LSTM 0.629 0.665
GRU 0.629 0.67

LSTM + Dropout 0.645 0.681
GRU + Dropout 0.645 0.664

Figure 12: Losses and accuracy after training different
architectures
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Architecture Time (sec)
RNN 49

LSTM 189
GRU 216

Figure 13: Time for training 100 epochs

are supposed to be totally random, while, in reality,  next days
trend  could  be  influenced  by  some  earlier  fluctuations.  In
figure  11,  results  for  1-15  days  of  prediction  have  been
reported. The accuracy for next day is still not bad, about 66%,
but it  is much better for 5 days horizon, about 72%, with a
small jump to 71% of accuracy on 10-days horizon prediction.
Nevertheless  it  is  worth  to  mention that  the  latter  is  a  test
which  is  dataset  dependent  result,  and  it  should  vary  for
different assets. Generally, this plot is showing, that the better
horizon of prediction is 1 to 5 days, which totally makes sense.

B- Hidden Dynamics Analysis

To  discover  hidden  behavior  of  RRNs we have  provided  a
visualization of activations after first recurrent layer. This idea
is inspired by the LSTMVis tool, see [18], that can be used to
understand  hidden  state  dynamics  in  LSTM.  We  have  the
hypothesis  that  RNNs can  early detect  trend  of  time series
movement because

Figure 14: Activation examples on random time windows

of  given  task  to  solve.  On  the  figure  14,  the  black  line
corresponds to some input time window, and the blue dashed
line shows the activations. As we can see, RNNs can discover
some  useful  patterns.  In  particular,  if  activation  in  some
moment goes to −0.5, this could be a signal that price will go
up  in  next  couple  of  days,  and  vice-versa.  Namely,  if
activation goes to 0.5 it could mean that price is going  to fall
in the closest future. The same holds for activations of second
recurrent layer. Such an approach can be used as a powerful
indicator also in more complex financial applications or,  for
example,  as  an  algorithmical  trading  signals.  We  intend  to
deeply  go  through  this  latter  topic  ,  particularly  from  the
machine learning point of view.

VII. CONCLUSIONS

In  the  present  paper  we  have  applied  some  of  the  most
promising RRNs architectures,  namely basic RNNs,  LSTMs
and GRUs, to stock market price movement forecasting. We
have compared  results trained  on a daily basis  for  GOOGL
stock prices with respect to the last five years, showing that the
LSTMs approach is able to provide a high enough accuracy,
up to 72% for 5 days prediction horizon. This means that it can
be successfully applied in practice. We also show that to avoid
overfitting to the dataset, RNNs have to be trained for large
number of epochs, choosing final weights carefully with early
stopping. 

Furthermore  we have also  performed the analysis  of  RNNs
hidden dynamics. The latter allows us to prove that NNs aren’t
not  black  box  learning models  with non interpretable  inner
structure.  In  fact,  visualizations  of  activations  clearly show,
that  NNs  can  learn  useful  patterns.  In  particular,  they  can
detect  short  term  ups  and  downs  in  time  series.  These
activations can be  used  as  indicators  for  further  time series
analysis. 
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In future research we plan to apply more bleeding-edge deep
learning approaches to financial time series. We will mainly
focus on the explanation of how neural attention mechanism,
bidirectional  RNNs  and  more  complex  structures  that  were
successfully applied  in  NLP  problems,  can  help  in learning
important  parts  of  time  series  of  interest.  We  also  plan  to
perform more in-depth research of hidden behaviour of RNNs
to  use  inner  activations  as  technical  indicators  or  feature
selectors.
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